On Compactness of Minimizing Sequences Subject to a Linear Differential Constraint

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On compactness of minimizing sequences subject to a linear di erential constraint

For Ω ⊂ RN open (and possibly unbounded), we consider integral functionals of the form F (u) := ∫ Ω f(x, u) dx, de ned on the subspace of Lp consisting of those vector elds u which satisfy Au = 0 on Ω in the sense of distributions. Here, A may be any linear di erential operator of rst order with constant coe cients satisfying Murat's condition of constant rank. The main results provide sharp co...

متن کامل

An efficient method for minimizing a convex separable logarithmic function subject to a convex inequality constraint or linear equality constraint

We consider the problem of minimizing a convex separable logarithmic function over a region defined by a convex inequality constraint or linear equality constraint, and twosided bounds on the variables (box constraints). Such problems are interesting from both theoretical and practical point of view because they arise in somemathematical programming problems as well as in various practical prob...

متن کامل

A Newton Barrier Method for Minimizing a Sum of Euclidean Norms Subject to Linear Equality Constraints

An algorithm for minimizing a sum of Euclidean Norms subject to linear equality constraints is described. The algorithm is based on a recently developed Newton barrier method for the unconstrained minimization of a sum of Euclidean norms (MSN). The linear equality constraints are handled using an exact L 1 penalty function which is made smooth in the same way as the Euclidean norms. It is shown...

متن کامل

Knapsack Cover Subject to a Matroid Constraint

We consider the Knapsack Covering problem subject to a matroid constraint. In this problem, we are given an universe U of n items where item i has attributes: a cost c(i) and a size s(i). We also have a demand D. We are also given a matroid M = (U, I) on the set U . A feasible solution S to the problem is one such that (i) the cumulative size of the items chosen is at least D, and (ii) the set ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Analysis und ihre Anwendungen

سال: 2011

ISSN: 0232-2064

DOI: 10.4171/zaa/1435